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Abstract: Fiber-optic hydrophone (FOH) is a significant type of acoustic sensor, which can be used 
in both military and civilian fields such as underwater target detection, oil and natural gas 
prospecting, and earthquake inspection. The recent progress of FOH is introduced from five aspects, 
including large-scale FOH array, very-low-frequency detection, fiber-optic vector hydrophone 
(FOVH), towed linear array, and deep-sea and long-haul transmission. The above five aspects 
indicate the future development trends in the FOH research field, and they also provide a guideline 
for the practical applications of FOH as well as its array. 
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1. Introduction 

Fiber-optic hydrophone (FOH) is a new 

generation of underwater acoustic sensor, which 
uses fiber as the medium of signal transmission and 
sensing. It has a variety of advantages such as high 

sensitivity, large dynamic range, small size, light 
weight, immunity to electromagnetic interference, 
and ease to large-scale arrays, so it has attracted 

wide attention since the first paper about FOH 
published in 1977 [1]. FOH is significant in both 
military and civilian fields, including underwater 

target detection, oil and natural gas prospecting, 
earthquake inspection. To date, FOH has a great 
many applications such as seabed fixed array, towed 

array, flank array, buoy, and subsurface buoy [2]. To 
be noticed, FOH has many different types which 
carry on modulation to optical parameters such as 

intensity, frequency, wavelength, phase, and 

polarization. Among these types, the 
phase-modulated one, i.e., the interferometric FOH, 
has been especially widely used due to its highest 

sensitivity.  
Owing to the huge potential for civilian and 

military applications, many countries have spent a 

great deal of efforts on the research and 
development of FOH since 1977 [330], e.g., Naval 
Research Laboratory (U.S.), QinetiQ (U.K.), and 

Optoplan (Norway). Although the start of FOH 
research is a little later in China [31], a series of key 
techniques have been broken through by some 

Chinese universities and research institutes since 
1990s [3252], and more attention has been paid to 
the practical applications of FOH array. 

Recently, with the continual reduction of the 
underwater target radiation noise as well as the 
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rising of ocean ambient noise (maritime shipping, 
seafloor mining, etc.), the detection difficulty of 
underwater acoustic signal using the FOH array is 
increasing rapidly. Also, the ocean oil-gas 

exploitation has extended from continental shelf to 
the deep sea and the request of stratigraphic 
structure resolution has become higher, which also 

puts forward new requirements to the FOH array. 
To satisfy these requirements, many new 

techniques in the FOH field have been proposed and 

researched in detail. First, large-scale FOH arrays 
have been investigated to improve the detection 
performance of underwater acoustic signals. Second, 

considering that very-low-frequency noise (<100 Hz) 
is the main noise source of underwater targets, the 
very-low-frequency detection is rather important for 

the military application of FOH. Third, fiber-optic 
vector hydrophone (FOVH) has also been widely 
researched because it can provide more complete 

information than the scalar one. Fourth, the towed 
linear array has drawn much attention due to its 
small diameter and flexibility to size-limited 

platforms. Finally, the FOH application is also 
moving towards the deep sea and long-haul 
transmission, so the pressure resistant performance 

and the fiber nonlinearity which were neglected 
before have become significant. In this paper, we 
review the recent progress in FOH from the 

aforementioned five aspects. 

2. Large-scale FOH array 

For the traditional acoustic pressure FOH, it can 
be treated as scalar FOH without directivity, and the 
target direction is obtained by the beam-forming of 

the FOH array. The beamwidth as well as the 
direction precision depends on the array scale, so the 
large-scale array is used to improve the direction 

precision of the underwater target. Moreover, the 
large-scale array can improve the spatial 
signal-to-noise gain, which leads to an increase in 

the detection range. Therefore, expanding the array 
scale is significant for the performance improvement 
of the FOH array. There are many methods to 

expand the array scale such as space division 
multiplexing (SDM), wavelength division 
multiplexing (WDM), and time division 

multiplexing (TDM). To be noticed, compared with 
the large-scale optical communication system, the 
scale of the FOH array is usually smaller because 

FOH uses not digital signals but analog ones. On 
this condition, the array loss must be paid more 
attention. That is to say, with an increase in the array 

scale, the array will suffer larger loss resulting from 
more optical components. Therefore, it is a key 
technique to improve the overall performance of the 

FOH array by enlarging the array scale. 

        

Fig. 1 Fiber-optic hydrophone array in USS Virginia [7]. 

Since more than twenty years ago, many 

organizations in the world have demonstrated 

various large-scale FOH arrays [5366]. As the 

organization that invents the first FOH, United 

States Naval Research Laboratory (NRL) has 

achieved great success in the application of the FOH 

array. In 1990, NRL conducted its first deployment 

of a 48-channel all optical towed array [67]. NRL 
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completed a few FOH array trials from 1990s to 

2000s. In 2003, the first lightweight wide aperture 

array (LWWAA) consisting of 2 700 sensors went 

into service with the launch of USS Virginia, as 

shown in Fig. 1 [7, 68], which was a milestone in the 

development history of FOH. On the other hand, the 

large-scale FOH array gains much interest in the 

civilian field such as oil and gas exploration. In 

2010, the Optoplan deployed a fiber ocean bottom 

seismic cable (OBC) system for the permanent 

reservoir monitoring at the Ekofisk filed in the 

North Sea, which consisted of 16 000 sensors in the 

wet end, as shown in Fig. 2. This project is the 

largest fiber optic sensor network in the world to the 

best of our knowledge [69]. In 2013, a distributed 

amplified hybrid dense wavelength division 

multiplexing (DWDM) and TDM array architecture 

for the large-scale interferometric fiber-optic sensor 

array system was demonstrated, as shown in Fig. 3, 

which showed the potential for multiplexing and 

interrogating up to 4 096 sensors using a single fiber 

pair [63]. The array scale can be further enlarged by 

increasing the number of channels. In recent years, 

China has also developed the large-scale FOH array 

for scientific research and an FOH array with 1 024 

sensors has been reported [66]. 

  

 

Modulator

Instrumentation 

1N 
spliter Mux

Laser 
source 

1 

n 

Pulser CIF Ph & Pol mod Booster

N-channel
demux 

Data 
integration

module Receiver &
demodulator

Array cable module N uplead fibers

n 3 2 1

Statin Circulator 
node 

N downlead 
fibers 

Cable 

 
Fig. 2 Structure of the Optoplan array. 
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3. Very-low-frequency detection of FOH 

As mentioned above, the very-low-frequency 

noise (<100 Hz) accounts for the main part of 

underwater target noise. Compared with higher 

frequency, it is difficult to reduce the very-low- 

frequency characteristic signals of underwater 

targets. So the very-low-frequency noise is used to 

detect underwater targets. Also, the spatial and time 

coherence is strong for the very-low-frequency 

signals, leading to a high gain when a mass of 

sensors are used for long-time accumulation. It has 

also to be noticed that the very-low-frequency 

acoustic signals can propagate farther because of 

lower transmission loss. Therefore, it is promising to 

develop very-low-frequency FOH to realize the 

detection of underwater targets. 

Due to the striking military background, the 

reports on the very-low-frequency detection are not 

sufficient. A relevant but not recent report was given 

by an Australian group that their fiber laser 

hydrophone possessed a flat acoustic responsivity of 

110 dB re Hz/Pa from 40 Hz to 1 kHz, while a 

decrease was observed at the band lower than 40 Hz 

[70]. NRL demonstrated that the practical acoustic 

responsivity of their distributed feedback fiber laser 

(DFB FL) based scalar FOH was 107 dB re Hz/Pa 

over the bandwidth from 100 Hz to 5 kHz, which 

agreed well with the theoretically predicted value. 

However, as for the very-low-frequency band, they 

only provided the theoretical prediction between  

30 Hz and 100 Hz due to the limitations of the 

underwater acoustic projector [71]. Recently, 

researchers in Russia have reported a hydrophone 

used in their towed array, but the acoustic pressure 

responsivity is not a flat pattern from 20 Hz to   

495 Hz [72]. In contrast, a report from China has 

shown that the acoustic sensitivity is about      

115 dB re Hz/Pa between 10 Hz and 10 kHz for their 

DFB FL-style FOH, which has improved the 

very-low-frequency detection ability compared with 

other designs [73]. The researchers from National 

University of Defense Technology (NUDT) have 

also investigated very-low-frequency interferometric 

FOH with a sensitivity of –116 dB re rad/μPa 

between 10 Hz and 2 kHz, phase noise of       

–102 dB re rad/Hz1/2 @100 Hz, and equivalent noise 

pressure of 14 dB @100 Hz re μPa/Hz1/2, as shown in 

Figs. 4–6. This equivalent noise pressure is far below 

the ocean ambient noise, making the 

very-low-frequency FOH a good choice for remote 

detection of underwater targets. 

 
Fig. 4 Very-low-frequency interferometric FOH sensor head. 
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Fig. 5 Sensitivity of the very-low-frequency FOH. 
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Fig. 6 Phase noise of the very-low-frequency FOH. 
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4. Fiber-optic vector hydrophone (FOVH) 

Compared with the traditional scalar FOH, 

FOVH is generally composed of acoustic pressure 

hydrophone as well as three orthogonally mounted 

fiber accelerometers, which can obtain more 

complete acoustic information. For the FOVH, the 

cardioid directivity can be achieved with the linear 

combination of acoustic pressure and vibration 

velocity, and a spatial gain of 4.8 dB–6 dB is 

obtained accordingly. As a result, through only one 

point detection, the isotropic noise is suppressed and 

the port and starboard ambiguity is removed, which 

finally increases the detection range. Moreover, the 

directivity of the FOVH has no relation with the 

frequency, and the size of the FOVH array is smaller 

than that of the FOH array for the same technique 

specifications. Based on the above advantages, 

FOVH plays a key role in many military 

applications, especially in subsurface buoy and 

size-limited platforms. 

The desired accelerometer that can be used in 

FOVH was firstly reported in the 1980’s [74] and 

has experienced fast development in the past four 

decades [7581]. On one hand, in terms of the 

structure, the general optical fiber accelerometer is a 

simple spring-mass system operating below the 

structural resonant frequency, but the concrete form 

is diverse. The compliant cylinder design appeared 

firstly [75] and has reached a mature level to date, 

which is generally adopted by researchers in Europe 

and Asia [8087]. Most recently, a geophone for 

seismic monitoring, which consists of three 

orthogonal accelerometers based on the Michelson 

interferometers wounded on the compliant cylinders, 

has been reported during the years from 2017 to 

2020, which possesses an operation bandwidth of  

2 Hz to 150 Hz, an acceleration responsivity of 

above 50 dB re rad/g, and a transverse suppression 

ratio of 30 dB [87]. The researchers from NUDT 

have investigated a FOVH with an acceleration 

sensitivity of 49 dB re rad/g, sensitivity fluctuation 

of <±0.7 dB, and an orthogonal crosstalk of   

<–52.9 dB, as shown in Figs. 7–9, and the developed 

FOVH has a 66 MPa pressure resistant performance, 

which can be used in the 6 000 m deep sea. At the 

same time, in order to further explore the possibility 

for military applications, the institutes in US and 

Australia, represented by NRL, have turned their 

attention to the architecture based on a spring disk or 

beam since the beginning of 2000’s, which 

possesses a more miniaturized, compact, and 

lightweight structure [8890]. Relevant researches 

can only be traced back to the report in 2009, where 

a DFB FL is bonded to the surface of a flexural bend 

beam so that the operating wavelength can be 

modulated with the strain-induced flexion of the 

beam, achieving an acceleration responsivity of  

142 dB re Hz/m·s–2 from 10 Hz to 1.5 kHz, and a 

transverse suppression ratio exceeding 20 dB [89]. 

 
Fig. 7 Structure of FOVH. 
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Fig. 8 Acceleration sensitivity of FOVH. 
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Fig. 9 Three-axis directivity of FOVH at the frequency of 

160 Hz. 

On the other hand, as for the sensing mechanism 
of the optical fiber accelerometer, the earliest and 
maturest scheme is based on the optical fiber 

interferometer, which is called the interferometric 
accelerometer [77, 80, 81, 8587]. Nevertheless, the 
emphases have been put on the sensing schemes 

based on the fiber Bragg grating (FBG) or the DFB 

FL by European [8284] and USA researchers since 
middle 2000’s, and the major concern is still the 
miniaturization of the design. Representatively, in 
terms of the FOVH, NRL has devoted most of the 

resources to the researches on the DFB FL-style one 
in the past 15 years, owing mainly to its striking 
advantages such as the small size and low noise [83]. 

The excellent achievement has also been reported in 
[79]. It should be pointed out that the DFB FL-style 
FOVH requires a fundamentally well-performed 

DFB FL with the intrinsic phase and intensity noise 
as low as possible. As a result, the researchers in 
NRL have never ceased exploiting the optimum 

performance of the DFB FL and have proposed 
complete theory in the recent report [91], which has 
marked the maturity of the DFB FL used for FOVH. 

In China, most recently, the typical FBG-type 
accelerometer has been reported to possess a flat 
acceleration sensitivity of 42 dB over the bandwidth 

from 20 Hz to 200 Hz [92], while the reported DFB 
FL-type one has the properties of a flat acceleration 
sensitivity of 33 dB re pm/g over the bandwidth 

from 5 Hz to 300 Hz [93]. 
Besides the accelerometer-type FOVH, NRL has 

also reported a velocity-style vector sensor on basis 

of a DFB FL bonded on a planar cantilever, which 
has pioneered in detecting the underwater acoustic 
particle velocity [9496]. The ingenious design 

makes the sensor respond to the acoustic field with 
frequency independence and maintains the 
sensitivity over the operating bandwidth, 

overcoming the disadvantage of the accelerometer- 
type FOVH that the acoustic sensitivity diminishes 
with the decreasing frequency. 

5. Towed linear array of FOH 

Towed linear array is another typical application 

of the FOH and it is also suitable for the size-limited 

platforms. The main problem for towed linear array 

is the flow noise, which is difficult to remove. After 

many years of development, it is ensured that the 

flow noise remains almost the same level as the 

diameter of towed linear array decreases, leading to 
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the improvement of general performance.  

The FOH was originally demonstrated by NRL 

to serve as the element of the towed linear array in 

1970’s, and the mature sign of the technology is the 

launch of the USS Virginia in 2003 which is 

equipped with a thinline towed array named as 

TB-33 [97]. Considering the suppression of the 

intrinsic noise and the prospective application on the 

mini underwater vehicles like the unmanned 

underwater vehicle (UUV), the development of the 

towed linear array has one trend towards designing a 

thinner towed cable. A report showed that an 

Australian-designed array had a practical diameter 

of only 25 mm, which reached the advanced level at 

that time [98]. The reports from other countries have 

appeared successively in recent years. It was 

reported by an Indian group that their demonstration 

possesses an outer diameter of 32 mm [99]. The 

researchers from Russia reported an interferometric 

towed linear array with an outer diameter of 20 mm, 

which is a real challenge for the interferometric 

scheme [72]. Almost simultaneously, Chinese 

researchers reported a sea trial using a 16-element 

DFB-FL based towed linear array with a diameter of 

only 12 mm, and the towed noise of the array was  

69 dB re mPa/Hz1/2 @1 kHz [100]. The researchers 

from NUDT carried out a lake trial with the 

32-element FOH towed linear array and obtained a 

towed noise of 75 dB re μPa/Hz1/2 @100 Hz at the 

speed of 6 knots, as shown in Figs. 10 and 11. 

Furthermore, they proposed a dynamic depth 

estimation method using the towed linear array 

[101].  

 

Fig. 10 FOH towed array. 
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Fig. 11 Noise spectrum of towed array. 

Another research focus lies in monitoring the 
gesture of the towed linear array. Recently, many 
researchers have put forward various methods to 
estimate the shape of the towed linear array and 
provided guidelines for the practical applications of 
the towed linear array [102104]. 

6. Deep-sea and long-haul transmission 

Owing to the advantage of detecting acoustic 
targets through deep-sea reliable acoustic path, the 
researches of the FOH move towards deep-sea 
application. The FOH and FOVH designed by 
NUDT have passed 66 MPa pressure resistant test, 
which have the potential for being used in the sea as 
deep as 6000 m. At the same time, with the 
developments of erbium-doped fiber amplifier 
(EDFA) and fiber Raman amplifier (FRA), the FOH 
system develops towards the direction of long-haul 
fiber transmission [52, 105109]. There are two 
types of systems to realize long-haul fiber 
transmission, i.e., the repeater one and the 
repeaterless one. For the former, the transmission 
distance can reach almost 1 000 km, while it can 
reach 120 km for the latter. To be noticed, the above 
distance is generally shorter than that of the 
long-haul fiber communication system, because the 
digital signals are used in fiber communication 
while the analog signals are used in fiber sensing. 
For the repeater system, the aforementioned 
Optoplan OBC system reached a 200 km 
transmission distance [69]. An FOH system with 
transmission distance as long as 500 km was also 
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reported [60]. In China, researchers from NUDT 
have developed an FOH array with the fiber 
transmission distance as long as 400 km using the 
cascaded-amplifier technique, as shown in      
Fig. 12, and the phase noise is about                   
–90 dB re rad/Hz1/2@1 kHz after the long-haul 

transmission [110]. On the other hand, for the 
repeaterless system, with the longer transmission 
distance, various nonlinear effects become dominant, 
which leads to large power depletion and serious 
phase noise. As a result, the performance of the FOH 
array is degraded seriously [111].  
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Fig. 12 400 km FOH system configuration in [110].   
The maximum input power for fiber 

transmission is primarily limited by a nonlinear 
effect named as stimulated Brillouin scatting (SBS), 
which has the lowest threshold in the long fiber 
[112]. So the suppression of SBS in the long-haul 
FOH array is necessary. Many researchers studied 
the SBS suppression problem in various optical 
systems [113119]. In the interferometric FOH 
system, the phase modulation method shows a great 
potential in SBS suppression for its convenience and 
high efficiency [120]. The effect of phase 
modulation on phase noise was studied in the 
interferometric fiber sensing systems, and the excess 
phase noise induced by phase modulation was 
observed in the experiment, which set a limit to the 
application of phase modulation [117]. A novel 
optical modulation method was proposed to 
suppress the phase modulation induced excess phase 
noise. However, theoretical analysis has not been 
derived to explain the excess phase noise in [117]. A 
detailed analysis was derived about the excess phase 
noise in the interferometric fiber sensing system, 
and a matching condition was proposed to suppress 
the excess phase noise [121], as shown in Figs. 13 
and 14. As a result, SBS can be completely 
suppressed in the long-haul FOH system by 
increasing the number of the modulation sidebands. 
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Fig. 13 Phase noise versus phase modulation frequency in 

[121]. 
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Fig. 14 Phase noise versus input power with different 

modulation indexes in [121]. 

Once the SBS is effectively suppressed, another 
nonlinear effect named as modulation instability (MI) 
becomes dominant especially in the TDM system 
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where optical pulses are used. The occurrence of MI 
generates symmetric sidebands by amplifying the 
amplified spontaneous emission (ASE) noise, which 
leads to serious phase noise [122]. Optical 

narrowband filtering is a direct solution to suppress 
MI, which is achieved by decreasing the ASE noise 
that seeds MI [123]. Orthogonal polarization pulses 

can increase MI threshold by 3 dB [124]. A method 
called time and frequency pump-probe multiplexing 
can increase MI threshold by N times (N is the 

number of spectral components), but the 
experimental setup is very complicated [125]. 
Spontaneous MI as well as the phase noise was 

suppressed with coherent seeds in the 
interferometric fiber sensing systems [126], as 
shown in Fig. 15, and the results showed that the 

average phase noise can be as low as about –90 dB 
re rad/Hz1/2 @1 kHz when the input power is    
800 mW, as shown in Fig. 16. 
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Fig. 15 Output spectra with an input power of 400 mW (blue: 

without seed; red: with seed). 
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Fig. 16 Output phase noise without and with seed and the 

phase noise of the input light (P=800 mW). 

7. Conclusions 

In summary, to make the research progress of 

FOH clear, five aspects are reviewed in detail, 

including large-scale FOH array, very-low- 

frequency detection, fiber-optic vector hydrophone 

(FOVH), towed linear array, and deep-sea and 

long-haul transmission. The mentioned techniques 

will be very helpful for the research and practical 

applications in the FOH field. Furthermore, a great 

deal of advanced technologies based on new 

materials, new mechanisms, and new structures are 

expected to be used in the FOH to improve its 

characteristics and enlarge its applications in the 

near future. 
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